AAAAAAAAAAAAAAAAAA

Nek Deep Dive

E. Merzari, K. Heisey, P.F. Fischer

Nuclear Engineering Division
Argonne National Laboratory
&
Mathematics and Computation Division
Argonne National Laboratory

9700 S. Cass Avenue, Lemont, IL 60439

é:\ U.S. DEPARTMENT OF
.4/ ENERGY

Outline

= Background (10 min)
— Navier-Stokes equations
— Why high-order for turbulence
— “High-order accuracy at low-order cost”
— Overview of the N-S Solver

= Nekbone App (15 min)
— Overview
— Current tests

= Qverview of Methods (25 min)
- SEM
— Pressure Solver in Nek
— Nekbone/Nek differences
— Scaling issues

Three-dimensional rendering of a Nek5000
simulation of the MASLWR experiment

Three codes are focus of CESAR research

Computational
Fluid Dynamics

Incompressible
Navier-Stokes

Spectral Elements

 High FLOP/load ratios
* Nearest neighbor
*Bulk synchronous
*Low memory per node
required for scalability
* Global AllReduce latency key

Nek

Neutron Transport
(approach 1)

Boltzmann

Method of
Characteristics

* tabulated exponential
* Complex parallelization
 Load balancing issues
*High FLOP/s rate

\/

Mini-Apps, Kernels

UNIC

Neutron Transport
(approach 2)

Stochastic
(Monte Carlo)

Data and Domain
Decomposition

* Load dominated
* Branch heavy
* Highly parallelizable in
particle space
*Poor locality in x-section
and tally space
°Low FLOP/s rate
*Performance hot spot

OpenMC

Nek - Principal Application

Incompressible Navier-Stokes equations
ou
1
Fu- Vu —Vp+ 2V?u
Ot Re
V-u O

Reynolds number Re > ~1000
— small amount of diffusion

— highly nonlinear (small scale structures result, range of scales widens for
increasing Re)

Excellent Approximation for a variety of reactor problems: Incompressibility is
an excellent approximation to single-phase reactor flows.

Very General Applicability: Many systems of engineering interest (ex.
Combustion Engines, Heat Exchangers), Blood Flow, etc..

4

Spectral Element Method & Transport Problems

= Variational method, similar to Finite = These problems are particularly challenging
Element, using GL quadrature. because, unlike diffusion, where:
. . . . _ 8u
"= Domain partitioned into E high-order T VP () ~ o vkt

quadrilateral (or hexahedral) elements ot
(decomposition may be nonconforming -
localized refinement) .Converges
exponentially fast with N

implies rapid decay of high wavenumber (k)
components (and errors), the high-k
components and errors in advection-dominated
problems persist.

= Trial and test functions represented as NV th-

order tensor-product polynomials within

each element. (V: 4 -- 15, typ., but N=
1-100+ also works.) n ~ EN3 gridpoints in
3D, EN?gridpoints in 2D.

= Turbulence provides a classic example of this
phenomena, Excellent performance of SEM.
High-order methods can efficiently deliver
small dispersion errors.

Illll
i TR T L T O w3

5 Spectral element simulations of turbulent pipe flow

e
Benefit of High Order Methods

From Sprague

(tty [Upn) x 100

Comparison for DNS in channel L N etal., 2010
flow: standard test case in
turbulence research
Accuracy Performance
I I I I 10000: T T T T T T T T T T T
___________________________ —C . . F 312K gridpoints per core
d"A - r
=T £
o 1000%
- £ -
MKM (1999) S
- O
|/ °—°SEM 9 100
5.6k K/ Le—— A FV | Tg
'« | | | |
53 50 75 00 125 150 o \
P: # of processors

n,: # of points in wall-normal direction
Roll-over at

= — SEM & FV have the same cost per gridpoint n/P ~ 10K
= — For same accuracy, over several metrics, FV needs 8-10 times as many points as
7th-order SEM
6

Remember: These are useful flops!

= Exponential convergence: ———F——
— e.g., doubling the number of Al Sy E——
points in each direction leads ., 11: Z;
to 10% reduction in error, gl . ——
d. ot . — |
vs. 4x for 2"%-order schemes. ww_ . S:L—E:—
1o * D"’f—_—_—'_
- f_'_,_.--“dd_‘___,_,_.—-—'—'d_'_
— Minimal numerical dispersion — I —
essential for N
_ Py
exascale problems. Ve = 1; €™ cos2my
Az ¢
= — 2
'Uy 211_6 S1N 27Y
R Re?
v oo Be_ \l Re
2 4

Exact Navier-Stokes solution, Kovazsnay(1948)

Overview of the Navier-Stokes Solver in Nek

< =

0
—u+u-Vu = —Vp+éV2u

ot
V-u = 0

H —5‘HB'D” | (uw" Bf + D7p"!
i)]) — i +
0 E 2_)1;. . 1_):). 1 ﬂ

)

E = %DB_IDT , r = O(A#?)
120 ‘

Semi implicit treatment of the nonlinear term: explicit (k th-order backward difference

formula / extrapolation | k=2or3) - k th-order characteristics)

Leads to linear Stokes problem: pressure/viscous decoupling:
— 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond.CG)

—i (consistent) Poisson equation for pressure [calls Helmholtz solver]

—i - SPD, Stiffest substep in Navier-Stokes time advancement, Most compute-intensive phase
—i Spectrally equivalent to SEM Laplacian, A

<
©
&
o
a
o
o
a
o
a
o

Additional operations to ensure stability DR SR 03 0
and turbulence resolution

o
o
o
o o Q Q
o
a @ a a
o o a
o
-
o
<
o
-]
<
o
o
o

Velocity, u in Py, continuous ; ot 0
Pressure, p in Py_,, discontinuous or ’ I

4

v
'
o o 6 o990 o o of
: o o o ele o o o

Pressure, p in Py, discontinuous (P (Pn2)

Strong Scallng Where We Are

PN s — P ¢ Juelich's IBM BG/P Eugene (32768-262144
160 @@ (EN) = 21M.15} L#E cores)
150" 7 -
1401 i . = 2.1M spectral elements with a polynomial order of
o5 " ; N=15
120: ,’, .l
§:&°}E ’/] = fixed velocity/pressure iterations 5/50
= 90} e . = full scale parallel efficiency = 0.71
80[- - .
70} s J = peak application performance = 172.1TFlops (19.3%
60 3
sof /)’ 3 of peak)
433.‘ e o F = elapsed time / timestep / gridpoint = 483 us
8192 16384 32678 40960 65536 (averaged over 20 timesteps)
nodes (4 cores/node)
= ANL's IBM BG/P Intrepid (16384-163840
— : p217 tes‘lcase (E\N) = (2.95M_.7)‘ — core S]
L S ek - 4
A jr’ mpn | = 2.95M spectral elements with a polynomial order of
30- /', . N=7
[P g] = fixed velocity/pressure iterations 8/20
§20— /,/] = full scale parallel efficiency = 0.7
= ,/‘] = peak application performance = 40.1TFlops (7.2% of
o ,/’ 1 peak)
10~ .
o] = elapsed time / timestep / gridpoint = 96 us (averaged
- | over 20 timesteps)
1 1 1 |
4096 8192 16384 32768 40960
nodes (4 cores/node)

= Recently we were able to run with 10 MPI
processes

A Realistic Reactor Problem (Exascale)

Steam

Generator

Nek is not an App. Itis a code. An App is when you apply Nek
to a specific problem.

It makes no sense to consider solving most of current Petascale
problems on an exascale machine. Reactor Problems are ideal
for Exascale.

Larger system (increased number of channels) but at SCALE
(same a-dimensional numbers) with available experiments.

The computational cost can be predicted in a straightforward
manner using Petascale simulations of at SCALE facilities.

~ trillion points (tens of billion CPU hours needed in the best
case)

Exascale might also help perform parametric studies (hundreds
of current petascale simulations) — e.g. to help study the effect
of the heating rate on stability.

Nekbone

Nekbone: Introduction - 1

Goal:
— Provide light-weight code to capture the principal hot kernel in Nek.
— Elliptic solver:

Hu" :={ + AtA)u" = "

Solves Helmholtz equation in a box using the spectral element method. Currently, box is
a 1D array of 3D elements or a box of 3D elements.
— Design decision: simple, rather than many options.

— Semi-Implicit formulation: Evaluation of a Poisson equation at every time step — most of
computational cost in Nek is in the Poisson solve (62% of a representative run)

— Also: any Nek5000 application that spends a majority of time in the temperature solver will
very closely resemble a Nekbone test ran on a large, brick element count.

Provides estimates of realizable flops, as well as internode latency and bandwidth
measures.

Diagonally-preconditioned CG iteration to solve the Poisson equation

— Different from Nek : Optimized Two level preconditioner in Nek vs. Diagonal
preconditioner in Nekbone

12

Nekbone : Introduction -2

Current Focus on diagonally-preconditioned CG iteration, involving [More on this later]:

— Operator-evaluation: w=Ap

— Nearest-neighbor communication: w = QQ" w”

— All-reduce: a=w'p

A p kernel offers several opportunities for parallelism to be explored.
Essentially : many matrix-matrix products

Tests run through a battery of problem sizes,n =P x Ex N3
— P =number of cores

— E = number of blocks (spectral elements) per core
— N= block-size (polynomial order in each direction)

— Run on Intel, BG/P, and BG/Q

Nek Skeleton Performance: Intel Xeon Nek Skeleton Performance: BG/P Nek Skeleton Performance: BG/Q

800

g0

MFLOPS
MFLOPS
MFLOPS

£
o
o

n
o
o
y

Number of elements, E - ; »
2 FOLIBIE @i Number of elements, E 25 Polynomial order, N MNumber of elements, E 25

Xeon BG/P BG/Q

Polynomial order, N

= MFLOPS/core for full skeleton kernel, 400 tests in (E,N) space.
= Xeon shows cache dependencies (less data = more performance)
= BG/P and Q show less cache sensitivity.

= Max-performance block size (N):

Xeon: N=8 (2.3 GFLOPS), BG/P: N=14 (.55 GFLOPS), BG/Q: N=12 (.765 GFLOPS)

Representative Nek case vs. Nekbone

= The case is a natural convection case at high Rayleigh number (Ra > 1019).

= Number of processors: 32768.

= Number of elements: 875520. Pre-conditioner
Other /
Adve - Otl‘
diffu
CG iteration
—

solver

= From this example, we see that the Helmholtz solve consumes 82% of the CPU
time (75% in pressure, 7% in u,v,w, and T).

= Of this, 20% is spent in the pre-conditioner, [which is not yet in nekbone, but will
be, once the nekbone users are ready for it]

= |t makes more sense, however, to focus on the 63% of the time that is represented
by the fairly simple nekbone kernel (essentially the CG iteration).

= REPRESENTATIVE OF THE ENVISIONED APPLICATION

Communication: Nek vs. Nekbone

Nearest neighbor Communication:
Source of Load Imbalance

Case-dependent!

One element NxNxN per core: 8
messages of size 1; 12 messages of
size N; and 6 messages of size N2

Message volume is dominated by
the 6 face exchanges.

At fine granularity (latency
dominates), each of this exchanges
has a similar cost(depends on
whether is exceeds m,)

Nekbone has two modes of
operation:
a string of elementsinalx1xE
array (communication-minimal)

-~ ablock of elments E1 x E2 x E3,
which has 26 neighbors
(representative).

Number of Communications per core

== NN W WD
v © un O U»n O

Number of Communications per core
o

o wn

T T T T 1

100 1000 10000 100000 1000000

Number of Cores

average

T T T T 1

10 100 1000 10000 100000

Number of Cores

Complexity: Nek vs. Nekbone

How we plan to increase mini-app fidelity/complexity:

are now

Nekbone - Summary

The principal challenge at exascale is
going to be to boost or retain reasonable
single-node performance. To leading
order, this question is NOT a scaling
guestion, it is a "hot kernel" question.

Nekbone focuses on the hot
kernel

This high-level kernel is simplified, so that
it's accessible to computer scientists (it's
not the full app. after all).

In terms of flops and fidelity to data flow,
it captures the essential points in the
smallest piece of code.

It includes access to two essential types of
communication

It provides opportunity for optimization at

multiple levels. From low to high, these
are:

*mxm kernels (already heavily optimized
for most platforms)
egradient kernels (3 mxms on the same
data)
egrad-transpose (3 mxms on different
data, producing one output)
eoperator level - calls to grad
*solver level:

o calls to operator

o calls to vector-vector ops

o calls to all-reduce

o calls to gs.

Methods Overview

2D basis function,

A little more about the SEM (Nek &
- Neksone)

u(z,y)|ge = D > ujjhi(r) hj(s)
i=0 j=0
hi(r) € Pn(r), hi(§;) = 05

g; = Gauss-Lobatto-Legendre quadrature
points:

- stability (not uniformly distributed points)

- allows pointwise quadrature (for most
operators...)

- easy to implement BCs and C° continuity

= [ocal tensor-product form (2D), allows
derivatives to be evaluated as matrix-

matrix products:
Ou N dh, "
— =N u, —2 =5 Dyu, = Du
or Ei7 gj pEZ:O Pl dr 62- zp: p-pJ r

= Memory access scales only as O(n)
(even in general domains)

= Work scales as N*O(n), but CPU time
is weakly dependent on N

= Tensor Product: “Matrix Free”
= For the Stifness Matrix A evaluations:

N=10

b

20

1. Operation countis O (N 4)
2. Memory access is 7 x number of points

3. Work is dominated by (fast) matrix-matrix
products involving Dr, Ds , etc.

Evaluation of a(v,u) in R?

21

In 3D, i Z is given by,

T
D, G Gi2 Gis D,

T =~ ay(v,u) = v’ | D G2 G Gas Ds | u
Dy Gi1z3 Gaz Gss Dy

with

(Cig)tn = PP T i(a f”“ﬂ')
ij = PlPmPn JIimn a_ .
7 dmn " k=1 axk axk mnl

e Look at the memory access costs: — only 7(N+1)3 to evaluate Au.
e However, if we store A, the cost is (N+1)° ! (per element!)

e Recall, there are now (N +1)3 unknowns in u, or in u® in the multi-
element case.

SEM Operator Evaluation (Nekbone & Nek)

Spectral element coefficients stored on
element basis (x; not u)

w=Au=QTA,Qu, w;:=Qw, u; :=Qu

Wy = QQTALEL

local work (tensor products)

nearest-neighbor (gather-scatter) exchange

-]
A2
Ap = . j
. " ;
Decouples complex physics —and
computation - (4;) from communication
(Q0")
Communication is required, and the
communication pattern must be established a
priori (for performance): set-up phase,
gs_zszetup(), and excecute phase, gs()

)
R
At

ug g
1
uy g

1
Uy o

“(]m
1
uy
1
Uy g
g 2
1
uy 2

1
Uz 2

Ug g
2
Uy o
9
u;
. 2

\

1

1 u \
1 Uy

1 Ug

1 Uy

1 Uy
1 Uy

1 uyy

~~ ~~

Q u
Example of Q for two elements

QQT Pictorially

Parallel Structure (Nek & Nekbone)

= Elements are assigned in ascending order to each processor

Serial, global element numbering

proc 0 proc1

Parallel, local element nhumbering

23

Communication Kernel:

General Purpose Gather-Scatter (Nek & Nekbone)

= Handled in an abstract way, simple interface.

. Given index sets:
proc 0: global num = {1,9,7,2,5,1,8}
proc 1: global num = {2,1,3,4,6,10, 11,
12,15}
On each processor: gs handle =
gs_setup(global num,n,comm)

= |n an execute() phase, exchange and sum:

proc 0: u = { u;, Ug, U-4U,, U, U;, Ug }
proc 1:u= { Uy, Uy, Uz, Uy, Ug, Uy, Uyp, Uyp, Uys }

On each processor: call gs(u,gs_handle)

© © o © © o
© ©o o + © ©o o
© © o © © o
(] (]
(] (]
©c 0 og+—"mOo © O
© ©o o + ©c © o
©c © o © © o

Pressure Solution Strategy (Nek ONLY)

1. Projection: compute best

approximation from previous time
steps

Prassura Count

G B B 2 & & & 2 3 B

— Computep” in span{ p"*!,

" i

n-2 n-1 '
Q y eee)E }through \:
straighlforward ,DI"OjECﬁOI’). WEERERIEEEETER TR LI
_ Ty o) ical /y a Z-fO Id savin gs in ¢ 4 fold reduction in iteratioh count, 2 — 4 in typical applications
Navier-Stokes solution time Reduction in (initial) residual
— Cost: 1 (or 2) matvecs in E per ——————————
nmestep o o o aola @ H_H.u F o
3. Preconditioned CG or GMRES to
solve
4
EDp=g"-Ep°
Preconditioning is divided in two
St_E@ Overlapping Solves: Poisson problems Coarse Grid Solve: Poisson problem
with homogeneous Dirichlet bcs. using linear finite elements on spectral

element mesh (GLOBAL).
25

Overlapping Schwarz Preconditioning for Pressure (Nek ONLY)

E
— D-1 o — TA -1 T -1
2= P r = RO AO RO r + S Ro,e Ao,e Ieo,eZ
e=1

A,, - low-order FEM Laplacian stiffness matrix on overlapping domain
for each spectral element k (Orszag, Canuto & Quarteroni, Deville & Mund, Casarin)

R,, - Boolean restriction matrix enumerating nodes within
overlapping domain e y

A, - FEM Laplacian stiffness matrix on coarse mesh (~ Ex E)

R," - Interpolation matrix from coarse to fine mesh

2D: A= (B,® A, + 4,®B,), STAS=A, STBS=1I.
ATl = (5,®8,)I@A + Ay@ D)7 (5] ®5]).
NOTE: B,, By, lumped 1D mass matrices (conditioning)

= Local and nearest neighbors
= Exploit local tensor-product

structure
Op. Count: W =8KN® (vs. 4KN® for band solve) = Fast diagonalization method
Storage: S=O(KN?) (vs. KN®for band solve) (FDM) - local solve cost is ™
NOTE: S,® S,u = S,US] (matrix-matrix product) (45 nlfh]\é 'id;rll)64)
26 26

Coarse-Grid Solver (Nek ONLY) -

Designed for rapid solution performance —
preprocessing cost not a constraint.

— Uses coarse/fine (C-F) AMG

— Energy minimal coarse-to-fine interpolation
weights

— Communication exploits gs() library

Break-Down of Navier-Stokes Solution Time
for n=120 M, n_= 417000

Case/P Total QQ' Coarse all reduce()

x4096 1994 125 1180 1.2
ad096 1112 125 192 1.4
b4096 846 25 1.
8192 460 88 22 1.
16384 § 64 20 1.

N\

XXT is a fast parallel Pairwise+all_reduce
coarse solver, AMG is Pwise/all_red/crys.rtr e \
necessary coarse (red) and fine (blue) pomts

a 27

AMG Statistics for n, = 417600

Communication stencil width (~ nnz/n_or nnz/n;) grows at coarse levels.

— pairwise exchange strategy is latency dominated for large stencils

— Therefore, rewrite gs() to switch to either crystal_router or all_reduce, if faster.

Table 3: 3D application hierarchy; pare = 0.5, Vtarg = 0.54

Level n nNne / n pPfm=1 M YoP (E mg) nni(:V) : nz7§? =
1 417600 0.36 0.80 3 T 0.67 8.3 9.4
2 151248 0.44 0.61 2 7 0.63 7.9 22.0
3 668387 0.43 0.59 2 7 0.60 8.8 30.8
4 28862 0.33 0.62 2 i 0.57 12.8 41.5
5 9471 0.22 0.68 3 7 0.55 214 32.8
6 2116 0.18 0.67 2 042 0.51 36.4 86.6
7 390 0.20 0.60 2 0.42 0.48 35.8 53.8
8 79 0.16 072 3 0.61 0.46 33.3 43.8
9 13 0.23 0.62 2 0.39 0.35 9.3 10.0

10 3 0.33 0.44 2 0 0.11 2.0 2.0

gs() times P=131,000 on BG/P

crystal router and all reduce >5-10 X faster than pairwise in many cases

0,001 | X * |
- + **
%))
b X
S . .
S)
N £ ox %o
Q) X X XX X R WX XX g X
N
Q 0.0001 f . |
S :
N [[
> " red — pairwise
© green — cr()
+
& blue — all_reduce
#K
. # nontrivial connections """ "
29 > all_reduce *
1e-05 1 1 1 1 1 1 1

° 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Issues

Communication Costs - 1

Linear communication model
t.(m)=(a+Bm)t, m=message size (64-bit words) T

ul:2 —
ul2 ——
‘paragon” u 132 ——
‘asci_red” u 1:2 ——
‘bal” w132 ——

YEAR t:_(us) ot B* o B m,___ MACHINE

1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286) o

1987 333 5960. 64 18060 192 93 Intel iPSC-1/VX <

1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386) _g-

1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX =

1990 .100 80. 2.8 800 28 29 Intel iPSC-i860 1996
1991 .100 60. .80 600 8 75 Intel Delta
1992 .066 50. .15 758 2.3 330 Intel Paragon 2004
1995 .020 60. .27 3000 15 200 IBM SP2 (BU96) -
1996 .016 30. .02 1800 1.25 1500 ASCI Red 333 words (64-bit
1998 .006 14. .06 2300 10 230 SGI Origin 2000 o

1999 .005 20. .04 4000 8 375 CrayT3E/450 o 4 —

2008 .002 3.5. .02 1750 10 175 BGP/ANL

= m, := o/p "~ message size = twice cost of single-word

10000

=t based on matrix-matrix products of order 10 — 13 <’

= At Fine granularity, code not constrained by internode bandwidtqsJ J’J
. . = M 2

" Latency is everything. e

1000

1 10 100 1000 10000

s words (64-bit)

Granularity Example: Standard Multigrid

= Computational complexity per V-cycle for the model problem:

— T,=50N/P¢,
= Communication overhead:

— Tco:=[(8 alog, N/P+308(N/P)>*+8 azlog,P)¢, 1 /[SON/P¢,]
- ~— - —

Restrict, smooth, prolongate Coarse grid solve

— To:=T+T,+ T, <1to balance communication / computation

15 T T 15

T, == 8 alog, N/P /(50 N/P)) i
i =106 106

T, = 30 (N/P)23 /(50 N/P) L\ TgP=109 (p=109

T, = 8alog, P /(50 N/P) 1 L\ 1 (10°)

> 15000 pts/proc for P=10° (BGP)
~24 MB/proc (Nek)

> 15 trillion points total (24 PB)

» Dominated by coarse-grid solve

» Dominated by intra-node latency
32 0 v 0

4 05f

Bandwidth, T,

b

Communication Costs - 2

= Billion-point 217-pin bundle simulation on P=65536

e Coarse solve time

15 B G * Neighbor exchange
O F
)
w0 ¥
=l

5t]

e mpi_all reduce
i 10000 20000 50000 20000 50000 50000

MPI rank

B Neighbor vs. all_reduce: 50a vs 4o (4a, not 16 x 40.)

Communication Costs - 3
Raw ping-pong & all_reduce times

time (seconds)

time (seconds)

001

0001 ¢

00001

1205 ¢

le-06

1le-07

1 10 100 1000 10000 100000
mwords (64 b)

0.01

-

/

0001 ¢
0.0001
1e-05

le-06

1e-07

1 10 100 1000 10000 100000
mwords (54 br)

(a) BG/P All_Reduce timing

34

time (seconds)

time (seconds)

0.01

0001

0.0001

1205 f

1006 |

1e-07

1 10 100 1000 10000 100000
mwords (64 b)

001

0001 ¢
00001

1005 [AT e
S

le-06 |

1e-07

1 10 100 1000 10000 100000
mwords (64 brt)

(b) CRAY All_Reduce timing

A major advance
with BG/Land P is
that all_reduce does
not scale as alog P

How Can a User/Developer Control Communication Cost?

Generally, one can reduce P to increase n/P

B Conversely, for a give P, what value of n will be required for good
efficiency?

Assume BGP latency, a* =3 usec

Assume 100x increase in node-to-node bandwidth
15 x 10° pts/node for P=10° (BGP)

Dominated by intra-node latency

More than 15 trillion points total ? (estimated by MG
computational model)

35

